Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Indian J Tuberc ; 69(2): 238-241, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1303554

ABSTRACT

Long-COVID, also referred to as post-acute COVID-19, chronic COVID-19, post-COVID syndrome, or post-acute sequelae of SARS-CoV-2 infection (PASC), generally refers to symptoms that develop during or after acute COVID-19 illness, continue for ≥12 weeks, and are not explained by an alternative diagnosis. It is not yet known whether "long-COVID" represents a new syndrome unique to COVID-19 or overlaps with recovery from similar illnesses. It's difficult for physicians to predict when symptoms will improve as it varies differently in different people. Patient's recovery depends on various factors including age, associated comorbidities, severity of COVID-19 infection. Some symptoms, like fatigue, might continue even while others improve or go away. This review addresses the pathogenesis, presentation of post covid fatigue, its severity and its management.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , COVID-19/complications , Fatigue/etiology , Fatigue Syndrome, Chronic/complications , Fatigue Syndrome, Chronic/etiology , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
2.
Environ Sci Pollut Res Int ; 28(22): 28624-28639, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1064580

ABSTRACT

This paper examines the nexus between the Covid-19 confirmed cases, deaths, meteorological factors, including an air pollutant among the world's top 10 infected countries, from 1 February 2020 through 30 June 2020, using advanced econometric techniques to address heterogeneity across the nations. The findings of the study suggest that there exists a strong cross-sectional dependence between Covid-19 cases, deaths, and all the meteorological factors for the countries under study. The findings also reveal that a long-term relationship exists between all the meteorological factors. There exists a bi-directional causality running between the Covid-19 cases and all the meteorological factors. With Covid-19 death cases as the dependent variable, there exists bi-directional causality running between the Covid-19 death cases and Covid-19 confirmed cases, air pressure, humidity, and temperature. Temperature and air pressure exhibit a statistically significant and negative impact on the Covid-19 confirmed cases. Air pollutant PM2.5 also exhibits a significant but positive impact on the Covid-19 confirmed cases. Temperature indicates a statistically significant and negative impact on the Covid-19 death cases. At the same time, Covid-19 confirmed cases and air pollutant PM2.5 exhibit a statistically significant and positive impact on the Covid-19 death cases across the ten countries under study. Hence, it is possible to postulate that cool and dry weather conditions with lower temperatures may promote indoor activities and human gatherings (assembling), leading to virus transmission. This study contributes both practically and theoretically to the concerned field of pandemic management. Our results assist in taking appropriate measures in implementing intersectoral policies and actions as necessary in a timely and efficient manner. Causal relations of Meteorological factors and Covid-19 (2 models used in the study).


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Cross-Sectional Studies , Humans , Meteorological Concepts , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL